Proving Lipid Rafts Exist: Membrane Domains in the Prokaryote Borrelia burgdorferi Have the Same Properties as Eukaryotic Lipid Rafts
نویسندگان
چکیده
Lipid rafts in eukaryotic cells are sphingolipid and cholesterol-rich, ordered membrane regions that have been postulated to play roles in many membrane functions, including infection. We previously demonstrated the existence of cholesterol-lipid-rich domains in membranes of the prokaryote, B. burgdorferi, the causative agent of Lyme disease [LaRocca et al. (2010) Cell Host & Microbe 8, 331-342]. Here, we show that these prokaryote membrane domains have the hallmarks of eukaryotic lipid rafts, despite lacking sphingolipids. Substitution experiments replacing cholesterol lipids with a set of sterols, ranging from strongly raft-promoting to raft-inhibiting when mixed with eukaryotic sphingolipids, showed that sterols that can support ordered domain formation are both necessary and sufficient for formation of B. burgdorferi membrane domains that can be detected by transmission electron microscopy or in living organisms by Förster resonance energy transfer (FRET). Raft-supporting sterols were also necessary and sufficient for formation of high amounts of detergent resistant membranes from B. burgdorferi. Furthermore, having saturated acyl chains was required for a biotinylated lipid to associate with the cholesterol-lipid-rich domains in B. burgdorferi, another characteristic identical to that of eukaryotic lipid rafts. Sterols supporting ordered domain formation were also necessary and sufficient to maintain B. burgdorferi membrane integrity, and thus critical to the life of the organism. These findings provide compelling evidence for the existence of lipid rafts and show that the same principles of lipid raft formation apply to prokaryotes and eukaryotes despite marked differences in their lipid compositions.
منابع مشابه
Selective Association of Outer Surface Lipoproteins with the Lipid Rafts of Borrelia burgdorferi
Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ospA...
متن کاملTransmembrane asymmetry and lateral domains in biological membranes.
It is generally assumed that rafts exist in both the external and internal leaflets of the membrane, and that they overlap so that they are coupled functionally and structurally. However, the two monolayers of the plasma membrane of eukaryotic cells have different chemical compositions. This out-of-equilibrium situation is maintained by the activity of lipid translocases, which compensate for t...
متن کاملCD14 Targets Complement Receptor 3 to Lipid Rafts during Phagocytosis of Borrelia burgdorferi
Phagocytosis of Borrelia burgdorferi, the causative agent of Lyme disease, is mediated partly by the interaction of the spirochete with Complement Receptor (CR) 3. CR3 requires the GPI-anchored protein, CD14, in order to efficiently internalize CR3-B. burgdorferi complexes. GPI-anchored proteins reside in cholesterol-rich membrane microdomains, and through its interaction with partner proteins,...
متن کاملInsolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts).
The insolubility of lipids in detergents is a useful method for probing the structure of biological membranes. Insolubility in detergents like Triton X-100 is observed in lipid bilayers that exist in physical states in which lipid packing is tight. The Triton X-100-insoluble lipid fraction obtained after detergent extraction of eukaryotic cells is composed of detergent-insoluble membranes rich ...
متن کاملSterol-rich plasma membrane domains in fungi.
Concepts regarding the eukaryotic plasma membrane have been evolving in light of growing evidence that it is segregated into distinct lateral domains known as lipid rafts. These steroland sphingolipid-rich raft domains are thought to play important roles in dynamic processes, including protein sorting, cell polarity, and signal transduction. Because of this, it has been very intriguing that ste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013